Scheda di dettaglio – i prodotti della ricerca

DatoValore
TitleItalian reference rivers under the Water Framework Directive umbrella: do natural factors actually depict the observed nutrient conditions?
AbstractBackground Despite the efforts made in the last century to counteract the nutrient enrichment from diffuse and point-sources, the excess of nitrogen and phosphorous is among the main causes of degradation of European rivers. In this context, determining natural background concentrations of nutrients in rivers is crucial for a correct definition of their ecological status. In the most anthropized regions, this is a difficult task. This study provides a nation-wide assessment of the nutrient concentration variability between Italian river reference sites. Results We applied the Affinity Propagation technique to identify groups of river sites classified as reference based on measured nutrients and oxygen water saturation. The role of natural and anthropogenic factors determining differences in nutrients concentration between groups of sites was explored. Nitrate concentrations varied from 0.01 mg N l(-1) to more than 5 mg N l(-1). Ammonia and total phosphorous varied between 0.001 and 0.12 mg l(-1). Observed nutrient levels, although in line with those identified for reference sites in other countries, largely exceed the ranges reported for natural basins. Atmospheric deposition of inorganic N and artificial and/or high-impact agricultural land use are the major factors determining differences in nutrient concentration. Factors like, e.g. catchment size, precipitation amount and altitude do not play a relevant role in explaining nutrient differences between groups of reference sites. Conclusions We especially focused on (i) major causes of failure in the selection of appropriate reference sites in Italy; (ii) the potential of setting higher NO3-N thresholds for the classification of ecological status in specific areas, and (iii) the prospective of a regionalization approach, in which human effects are accepted to a low degree for reference site selection or when setting thresholds for peculiar geographical areas.
SourceEnvironmental Sciences Europe 34 (1)
KeywordsWFDEcological statusLand useAtmospheric depositionNitrate
JournalEnvironmental Sciences Europe
EditorSpringer, , Germania
Year2022
TypeArticolo in rivista
DOI10.1186/s12302-022-00642-y
AuthorsErba, Stefania; Buffagni, Andrea; Cazzola, Marcello; Balestrini, Raffaella
Text476568 2022 10.1186/s12302 022 00642 y ISI Web of Science WOS 000829039000001 WFD Ecological status Land use Atmospheric deposition Nitrate Italian reference rivers under the Water Framework Directive umbrella do natural factors actually depict the observed nutrient conditions Erba, Stefania; Buffagni, Andrea; Cazzola, Marcello; Balestrini, Raffaella CNR IRSA Background Despite the efforts made in the last century to counteract the nutrient enrichment from diffuse and point sources, the excess of nitrogen and phosphorous is among the main causes of degradation of European rivers. In this context, determining natural background concentrations of nutrients in rivers is crucial for a correct definition of their ecological status. In the most anthropized regions, this is a difficult task. This study provides a nation wide assessment of the nutrient concentration variability between Italian river reference sites. Results We applied the Affinity Propagation technique to identify groups of river sites classified as reference based on measured nutrients and oxygen water saturation. The role of natural and anthropogenic factors determining differences in nutrients concentration between groups of sites was explored. Nitrate concentrations varied from 0.01 mg N l 1 to more than 5 mg N l 1 . Ammonia and total phosphorous varied between 0.001 and 0.12 mg l 1 . Observed nutrient levels, although in line with those identified for reference sites in other countries, largely exceed the ranges reported for natural basins. Atmospheric deposition of inorganic N and artificial and/or high impact agricultural land use are the major factors determining differences in nutrient concentration. Factors like, e.g. catchment size, precipitation amount and altitude do not play a relevant role in explaining nutrient differences between groups of reference sites. Conclusions We especially focused on i major causes of failure in the selection of appropriate reference sites in Italy; ii the potential of setting higher NO3 N thresholds for the classification of ecological status in specific areas, and iii the prospective of a regionalization approach, in which human effects are accepted to a low degree for reference site selection or when setting thresholds for peculiar geographical areas. 34 Published version https //enveurope.springeropen.com/articles/10.1186/s12302 022 00642 y Articolo in rivista Springer 2190 4716 Environmental Sciences Europe Environmental Sciences Europe raffaella.balestrini BALESTRINI RAFFAELLA andreastefano.buffagni BUFFAGNI ANDREA STEFANO stefania.erba ERBA STEFANIA marcello.cazzola CAZZOLA MARCELLO