Oxidation of azo and anthraquinonic dyes by peroxymonosulphate activated by UV light.
Michele Pagano, Ruggiero Ciannarella, Vito Locaputo, Giuseppe Mascolo, and Angela Volpe.
Frontiers in Microbiology, 2017


The photochemical degradation of two azo and two anthraquinonic dyes was performed using potassium peroxymonosulphate (Oxone®) activated by UV radiation. The fast decolourization of all dyes was observed within 6 min of UV irradiation, with corresponding dye decays higher than 80%. The kinetic rate constants of the dyes’ decay were determined, along with the energetic efficiency of the photochemical treatment, taking into account the influence of a few anions commonly present in real wastewaters (i.e., chloride, nitrate, carbonate/bicarbonate and phosphate ions). Chloride and carbonate/bicarbonate ions enhanced dye degradation, whereas phosphate ions exerted an inhibitory effect, and nitrates did not have a predictable influence. The dye decolourization was not associated with efficient mineralization, as suggested by the lack of a significant total organic carbon (TOC) decrease, as well as by the low concentrations of a few detected low molecular weight by-products, including nitrate ions, formaldehyde and organic acids. High molecular weight by-products were also detected by mass spectrometry analysis. The investigated process may be proposed as a convenient pre-treatment to help dye degradation in wastewater during combined treatment methods.

More in this category: « 207 209 »